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THE PRESSURE EXERTED BY A STAMP OF CIRCULAR CROSS-SECTION ON AN 
ELASTIC HALF-SPACE* 

V.I. MOSSAKOVSKII and E.V. POSHIVALOVA 

A solution of the problem of a circular stamp in its exact formulation, 
i.e. without simplifying assumptions regarding satisfaction of the 
boundary conditions and Laplace's equation, is obtained. A method of 
solving three-dimensional contact problems of the theory of elasticity 
due to Mossakovskii is used, and the solution obtained is compared with 
the solution given in /i/. 

As we know /2/, the problem of the pressure exerted by a stamp of circular cross-section 
reduces, in the case of axial symmetry, to determining the normal derivative F,' (@, 0) in the 
region of contact, and the function F (p,z) harmonic in the half-space and vanishing at 
infinity, which satisfies the following boundary conditions: 

F,'(O, 0 ) = 0 ,  0~. p . f  a, b ~ . p . ~ ,  F ( ~ , O ) - / ( o ~  a < p < o o  (t) 

where a and b denote the inner and outer radius of the annulus, p is the polar radius, and 
z = /(p) is the equation of the stamp surface (the z axis is directed into the elastic 
half-space). 

The pressure under the stamp P (p) is given by the formula 

P (p) = I/2E (| - -  v2) -* F , '  (p, 0), a < p < b 

where E is the modulus of elasticity and v is Poisson's ratio. 
In the general case we must assume that 
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I (P) = I1 (P) -~- 12 (P), 11 (P) = ao + alP Jr . . . .  12 (9) = a-*P-* + a-raP -2 

Such a representation of the function /(p) is obviously unique, also 1, (p) can be 
continued up to the zero and ], (9) up to infinity. 

Let us introduce two functions Fk (P, z) (k = I, 2) harmonic in the elastic half-space 
and such, that 

F1 (P, z) -4- F2 (p, z) = F (P, z) (2) 
F I (P ,  0) = 1 , ( 9 ) ,  0 < p < b ;  F 2(p, 0) = ) ' 2 (p ) ,  a < 9 <  oo 

Then the boundary conditions (I) will take the form 

F , , '  (p, 0) + F2,'  (9, 0 ) = 0 ,  0 < 9 < a ,  b < p < z ¢  (3) 
F , ( p ,  0) = / ~ ( p ) ,  0 < p < b ;  F 2(p, 0) = 1 2 ( p ) ,  a < p < z ¢  

The functions F k (p, z) harmonic in the half-space z < 0 can be written in the form 

F~ (p, z) = J q ~  (t) e tVo  (tp) dt (4) 

where q0~ (t) are functions as yet unknown, and  ]0 is a Bessel function of zero order. Here 
and henceforth the integration with respect to t will be carried out from 0 to co. 

Let us put z = 0 in formulas (4) and replace the Bessel functions by contour integrals. 
Changing the order of integration and introducing the notation ~k (s) = J(1)~ (t)tSdt we obtain 
a system of integral equations for determining the functions ~ (s) (from now on the inte- 
gration in 8 will be carried out from ¢-- ~oo to c 2c ~oo) 

r (,/~ - -  '/2,) / 1 (P), k = l ,  0 < 9 < b 
2a, 1 2 - ~ ( s )  r (% + V2s) P'-~ ds = t O, k = 2, a < p < oo (5) 

r (I -- */2s) 
t 1 2 , - , ( ~ l ( s ) + ~ 2 ( s )  ) 9 ' - 2 d s = 0 ,  0 < 9 < a ,  b < 9 < ~  2~t F (*/¢) 

Let two harmonic functions y ~ O  symmetrical in z, be given in the half-plane uk (x, y) 

u~ (x, y) = J¢~ (t) cos xte t tdt  (6) 

where ~k(t) are unknown functions. Putting y = 0 in formula (6), substituting into it 
the value of cos xt in the form of a contour integral and changing the order of integration, 
we obtain 

t ] l / '~2-S- lG~(s)  r ( - - ' h  s) uk (x, O) = ~ r (~/2 + */,s) 
G h (s) = JLpk (t) tsdt 

x s ds (7) 

Let us require that 

F, , '  (p, 0) = p-~u**' (p, 0), F , , '  (p, 0) = p-lu,v'  (p, 0) (8) 

Having established such a relation between the planar and spatial functions, we can find 
the pressure under the stamp directly from the plane problem without using integral relation- 
ships. 

Using relations (8) we obtain a relation connecting the kernels G~ (s) and (~ (s). 
Substituting the result into Eqs. (5) and using the following transformation formulas: 

x 

I p,~-* (x~ ~ p2) ~-1 dp = */2{3 (a, {~) x'~+'~ -' 
0 

co 

1 92='~ +* @ - ~2)~i d9 = I/2~ (~, 8) z-2~ 
x 

we obtain the following system of equations: 

I ] ~ 2-'GI (s) r(*/2--'/2s) 9'-*ds = ! (p) 2a~ r (V,O -WK-, 0 < p < b 

r (I -- V~) r ('12 -- l/,s) ] 9'-* ds 0 I V ~  2-' a~ (s) r ('/2 + ~/2,) 62 (,) = (9) 2:t~ r (*/,s) j 

r (1 - -1 / , 0  p , - l d s = O ,  a < p < o o  1 ] I /~2- 'G2(s)  r(~/2+'/~s) 

Taking into account relations (7), we obtain the following boundary conditions for the 
functions u~ (x, 0): 
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UlXt (X, O) 3C U2y' (/', 0) = 0, 0 < X < (/, b ~.  a -<. oo 
u~' (x, 0 ) = 0 ,  a < x < o o  

( t ( , )  

In the case of a stamp with a flat base, we can write 

/ ,  (P) = c,  /2 (P) = 0 

Let us map the region y ~ 0 onto the inside of a circle lying in the plane o = ~ + ~, 
using a single-valued analytic function o ~ R (z). The latter relation establishes a one-to- 
one correspondence between the points z of the contour y = 0, and points t ~ e ~ of the 
circle t = R (x). At the same time we establish one-to-one correspondence between the points 
a,--a, b,--b and the points of a circle of the following form: 

a ~ e,O,, - -  a _-~ e-~O,, b ~ e w ,  - -  b _--~ e-,O, ( 0 2 = n - - 0 1 )  

The unknown function mapping the lower half-plane onto the inside of the circle will have 
the form 

= ~ I/~ (t  - z ) / ( l  + z) 

The boundary of the half-plane y = 0 will be transformed under this mapping into the 

circle I e'~ I = I, and 

q) = 2 arctg (x/V"~) 
Let us introduce certain analytic functions 

O~ ((o) = EAr.o) '~-I, k = 1,2 

where Akn are constants (from now on the summation will be carried out from n = ~ to oo). 
Let the functions Uhx, u~y be connected with dp~ in the following manner: 

O~( t )  = u ~ ( x ,  O) + zu[~(x, O) 

Then  we c a n  r e p r e s e n t  t h e  f u n c t i o n s  u~y (x, 0), u ~  (x, O) by  c e r t a i n  t r i g o n o m e t r i c  s e r i e s  

u'A-x (x, O) = EArn sm (n - -  t)  (p (ii) 

uku (x, 0) = Z A ~ c o s ( n  - -  1)%0 

The functions u k (x, 0) have singularities at the points a,--a,b,--b (conditions (i0)) 
respectively, and the series (ii) will converge slowly. 

The following example will simplify the calculations by increasing the rate of con- 
vergence of the series. To do this we introduce a new series connected with (ii) by the 
relation 

o3 0.5 o 7  2 
'oi, I 

Z C k ~ t  n-1  = Y , A ~ n t  n - t  ( t  - -  e ~°~) ( t - -  e -~%) ( t  - -  e -*(u-°,)) ( t  - -  e l(:~-O,)) = Z A k n t n - a A  

A = 2 (cos 2(p - -  cos 201) 

Taking into account the manipulations which have been carried out, we obtain 

uk,  (x, O) = Y.C~JA s in  (n - -  t)  q% u~y (x, O) = Y.CkJA cos (n - -  t)  q~ 

The constants C~n are found using formulas (i0) with help of the method of least squares 
Conditions (8) yield the pressure under the stamp 

1 D (p) = 1/2E (1 - -  'v2) -1 p-1 (ulxt (p, O) -Jr 0 2 )  
u ~ '  (p, 0)) 

The pressure distribution under the stamp with a flat base which 
was solved for a/b = 0.3 (b ~ I) using formula (12), apart from the 
multiplier */sE (I--~2) -I , is shown in the figure. Curve I is con- 
structed using the present method, and curve 8 using the method 
described in /I/. 
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